Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414198

RESUMO

Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.

2.
Microbiol Res ; 282: 127664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422860

RESUMO

Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 µM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.


Assuntos
Mycobacterium , Proteína Supressora de Tumor p53 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Macrófagos , Fenol , Células THP-1 , Fagossomos/metabolismo , Fagossomos/microbiologia , Lisossomos/metabolismo , Mycobacterium/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo
3.
3 Biotech ; 13(9): 310, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37621321

RESUMO

The Frieswal™ is a crossbred cattle evolved by ICAR-Central Institute for Research on Cattle utilizing more than 15,000 cattle maintained at more than 37 military farms spread all over the agro-climatic regions of the country. The ddRAD sequencing method was used to identify and annotate the SNPs and INDELs. The results of variant calling revealed 1,487,851 SNPs and 128,175 INDELs at a read depth of 10. A total of 3,775,079 effects were identified, and majority (66.41%) of the effects were in the intron region of the genome followed by intergenic (21.87%). Majority (99.18%) of the variants had the modifier effect. The results revealed a higher magnitude of transitions as compared to the transversion. The classification of SNPs by functional class revealed a majority of missense (43%) and silent (56%) effects. Out of 26,278 genes identified, 1841 SNPs were annotated in 207 candidate genes responsible for various milk production and reproduction traits. The observed heterozygosity was 0.2804 against the expected heterozygosity value of 0.2978. The overall average inbreeding coefficient (FIS) was 0.0604. The pathway analysis revealed that the prolactin signaling pathway (GO:0038161) was significant biological process complete for both milk production and reproduction traits. The SNP variations can be effectively used as markers for early and accurate identification of the QTLs and for formulating an efficient and effective breed improvement program in Frieswal™ cattle. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03701-0.

4.
PLoS Genet ; 18(11): e1010442, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350833

RESUMO

Hsp90 constitutes one of the major chaperone machinery in the cell. The Hsp70 assists Hsp90 in its client maturation though the underlying basis of the Hsp70 role remains to be explored. In the present study, using S. cerevisiae strain expressing Ssa1 as sole Ssa Hsp70, we identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect the maturation of Hsp90 clients v-Src and Ste11. The identified Ssa1 amino acids critical for Hsp90 function were also found to be conserved across species such as in E.coli DnaK and the constitutive Hsp70 isoform (HspA8) in humans. These mutations are distal to the C-terminus of Hsp70, that primarily mediates Hsp90 interaction through the bridge protein Sti1, and proximal to Ydj1 (Hsp40 co-chaperone of Hsp70 family) binding region. Intriguingly, we found that the bridge protein Sti1 is critical for cellular viability in cells expressing Ssa1-T175N (A1-T175N) or Ssa1-D158N (A1-D158N) as sole Ssa Hsp70. The growth defect was specific for sti1Δ, as deletion of none of the other Hsp90 co-chaperones showed lethality in A1-T175N or A1-D158N. Mass-spectrometry based whole proteome analysis of A1-T175N cells lacking Sti1 showed an altered abundance of various kinases and transcription factors suggesting compromised Hsp90 activity. Further proteomic analysis showed that pathways involved in signaling, signal transduction, and protein phosphorylation are markedly downregulated in the A1-T175N upon repressing Sti1 expression using doxycycline regulatable promoter. In contrast to Ssa1, the homologous mutations in Ssa4 (Ssa4-T175N/D158N), the stress inducible Hsp70 isoform, supported cell growth even in the absence of Sti1. Overall, our data suggest that Ydj1 competes with Hsp90 for binding to Hsp70, and thus regulates Hsp90 interaction with the nucleotide-binding domain of Hsp70. The study thus provides new insight into the Hsp70-mediated regulation of Hsp90 and broadens our understanding of the intricate complexities of the Hsp70-Hsp90 network.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteômica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/genética , Nucleotídeos/metabolismo , Ligação Proteica , Adenosina Trifosfatases/metabolismo , MAP Quinase Quinase Quinases/metabolismo
5.
Database (Oxford) ; 20222022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169329

RESUMO

Cancer stem cells (CSCs) are a small heterogeneous population present within the tumor cells exhibiting self-renewal properties. CSCs have been demonstrated to elicit an important role in cancer recurrence, metastasis and drug resistance. CSCs are distinguished from cancer cell populations based on their molecular profiling or expression of distinct CSC biomarker(s). Recently, a huge amount of omics data have been generated for the characterization of CSCs, which enables distinguishing CSCs in different cancers. Here, we report biomarkers of the Cancer Stem Cells database (BCSCdb), a repository of information about CSC biomarkers. BCSCdb comprises CSC biomarkers collected from PubMed literature where these are identified using high-throughput and low-throughput methods. Each biomarker is provided with two different scores: the first is a confidence score to give confidence to reported CSC biomarkers based on the experimental method of detection in CSCs. The second is the global score to identify the global CSC biomarkers across 10 different types of cancer. This database contains three tables containing information about experimentally validated CSC biomarkers or genes, therapeutic target genes of CSCs and CSC biomarkers interactions. It contains information on three types of markers: high-throughput marker (HTM-8307), high-throughput marker validated by the low-throughput method (283) and low-throughput marker (LTM-525). A total of 171 low-throughput biomarkers were identified in primary tissue referred to as clinical biomarkers. Moreover, it contains 445 target genes for CSC therapeutics, 10 biomarkers targeted by clinical trial drugs in CSCs and 5 different types of interaction data for CSC biomarkers. BCSCdb is an online resource for CSC biomarkers, which will be immensely helpful in the cancer research community and is freely available. Database URL: http://dibresources.jcbose.ac.in/ssaha4/bcscdb.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ensaios Clínicos como Assunto , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
6.
Microbiology (Reading) ; 168(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35980355

RESUMO

Two-component systems (TCSs) are required for the ability of Mycobacterium tuberculosis to respond to stress. The paired TCS, SenX3-RegX3 is known to respond to phosphate starvation and acid stress. The other stress conditions under which RegX3 is required for M. tuberculosis to mount an appropriate response, remain incompletely understood. Here we have employed genome-wide microarray profiling to compare gene expression in a ΔregX3 mutant with the wild-type under phosphate stress, in order to gain information on the probable RegX3 regulon. We pulled out a set of 128 hypoxia-associated genes, which could potentially be regulated by RegX3, by overlapping the gene set downregulated at least twofold in ΔregX3 with the gene set reported in the literature to be associated with the response to hypoxia. We identified potential RegX3 binding inverted repeats at the loci of 41 of these genes, in silico. We also observed that ΔregX3 was attenuated in terms of its ability to withstand hypoxia, and this was reversed upon complementation with regX3, corroborating a role of RegX3 in the response of M. tuberculosis to hypoxia. We validated the binding of RegX3 at the upstream regions of a selected set of these genes. Electrophoretic mobility shift assays (EMSAs) confirmed that RegX3 binds to the upstream regions of the hypoxia-associated genes Rv3334, whiB7, Rv0195, Rv0196 and Rv1960c. Gene expression analyses showed that the expression of these genes is regulated by RegX3 under hypoxia. We also show that the expression of whiB7, Rv3334 and Rv0195 in macrophage-grown M. tuberculosis, is dependent on RegX3. Finally, we show that attenuation of survival of ΔregX3 under hypoxia is partly reversed upon overexpression of either Rv0195 or Rv3334, suggesting that the RegX3-Rv0195 and the RegX3-Rv3334 axis are involved in the adaptation of M. tuberculosis to a hypoxic environment.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis , Regulação Bacteriana da Expressão Gênica , Humanos , Hipóxia , Mycobacterium tuberculosis/metabolismo , Fosfatos/metabolismo , Fosfotransferases/genética , Análise de Sistemas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tuberculose/microbiologia
7.
Sci Rep ; 12(1): 13801, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963878

RESUMO

There is an urgent need to validate new drug targets and identify small molecules that possess activity against both drug-resistant and drug-sensitive bacteria. The enzymes belonging to amino acid biosynthesis have been shown to be essential for growth in vitro, in vivo and have not been exploited much for the development of anti-tubercular agents. Here, we have identified small molecule inhibitors targeting homoserine acetyl transferase (HSAT, MetX, Rv3341) from M. tuberculosis. MetX catalyses the first committed step in L-methionine and S-adenosyl methionine biosynthesis resulting in the formation of O-acetyl-homoserine. Using CRISPRi approach, we demonstrate that conditional repression of metX resulted in inhibition of M. tuberculosis growth in vitro. We have determined steady state kinetic parameters for the acetylation of L-homoserine by Rv3341. We show that the recombinant enzyme followed Michaelis-Menten kinetics and utilizes both acetyl-CoA and propionyl-CoA as acyl-donors. High-throughput screening of a 2443 compound library resulted in identification of small molecule inhibitors against MetX enzyme from M. tuberculosis. The identified lead compounds inhibited Rv3341 enzymatic activity in a dose dependent manner and were also active against HSAT homolog from S. aureus. Molecular docking of the identified primary hits predicted residues that are essential for their binding in HSAT homologs from M. tuberculosis and S. aureus. ThermoFluor assay demonstrated direct binding of the identified primary hits with HSAT proteins. Few of the identified small molecules were able to inhibit growth of M. tuberculosis and S. aureus in liquid cultures. Taken together, our findings validated HSAT as an attractive target for development of new broad-spectrum anti-bacterial agents that should be effective against drug-resistant bacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Homosserina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Staphylococcus aureus
8.
J Med Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748565

RESUMO

Introduction. Studying taxonomic and functional signatures of respiratory microbiomes provide a better understanding of airway diseases.Gap Statement. Several human airway metagenomics studies have identified taxonomic and functional features restricted to a single disease condition and the findings are not comparable across airway diseases due to use of different samples, NGS platforms, and bioinformatics databases and tools.Aim. To study the microbial taxonomic and functional components of sputum microbiome across airway diseases and healthy smokers.Methodology. Here, 57 whole metagenome shotgun sequencing (WMSS) runs coming from the sputum of five airway diseases: asthma, bronchiectasis, chronic obstructive pulmonary diseases (COPD), cystic fibrosis (CF), tuberculosis (TB), and healthy smokers as the control were reanalysed using a common WMSS analysis pipeline.Results. Shannon's index (alpha diversity) of the healthy smoker group was the highest among all. The beta diversity showed that the sputum microbiome is distinct in major airway diseases such as asthma, COPD and cystic fibrosis. The microbial composition based on differential analysis showed that there are specific markers for each airway disease like Acinetobacter bereziniae as a marker for COPD and Achromobacter xylosoxidans as a marker of cystic fibrosis. Pathways and metabolites identified from the sputum microbiome of these five diseases and healthy smokers also show specific markers. 'ppGpp biosynthesis' and 'purine ribonucleosides degradation' pathways were identified as differential markers for bronchiectasis and COPD. In this meta-analysis, besides bacteria kingdom, Aspergillus fumigatus was detected in asthma and COPD, and Roseolovirus human betaherpesvirus 7 was detected in COPD. Our analysis showed that the majority of the gene families specific to the drug-resistant associated genes were detected from opportunistic pathogens across all the groups.Conclusion. In summary, the specific species in the sputum of airway diseases along with the microbial features like specific gene families, pathways, and metabolites were identified which can be explored for better diagnosis and therapy.


Assuntos
Asma , Bronquiectasia , Fibrose Cística , Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Cística/microbiologia , Escarro/microbiologia , Microbiota/genética , Doença Pulmonar Obstrutiva Crônica/microbiologia , Bronquiectasia/microbiologia , Asma/microbiologia
9.
Biochim Biophys Acta Gen Subj ; 1865(2): 129806, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253803

RESUMO

BACKGROUND: Host-directed therapy is considered a novel anti-tuberculosis strategy in tackling the tuberculosis burden through autophagy induction by various inducers to curtail the growth of intracellular Mycobacterium tuberculosis. METHODS: In this study, we investigated the anti-tubercular role of soybean lectin, a lectin isolated from Glycine max (Soybean). Effect of SBL on intracellular mycobacterial viability through autophagy and the mechanism involved in differentiated THP-1 cells was studied using different experimental approaches. RESULTS: We initially performed a time kinetic experiment with the non-cytotoxic dose of SBL (20 µg/ml) and observed autophagy induction after 24 h of treatment. Abrogation of autophagy in the presence of 3-MA and an increase in LC3 puncta formation upon Baf-A1 addition elucidated the specific effect on autophagy and autophagic flux. SBL treatment also led to autophagy induction in mycobacteria infected macrophages that restricted the intracellular mycobacterial growth, thus emphasizing the host defensive role of SBL induced autophagy. Mechanistic studies revealed an increase in P2RX7 expression, NF-κB activation and reactive oxygen species generation upon SBL treatment. Inhibition of P2RX7 expression suppressed NF-κB dependent ROS level in SBL treated cells. Moreover, SBL induced autophagy was abrogated in the presence of either different inhibitors or P2RX7 siRNA, leading to the reduced killing of intracellular mycobacteria. CONCLUSION: Taken together, these results conclude that SBL induced autophagy exerts an anti-mycobacterial effect in P2RX7-NF-κB dependent manner through the generation of ROS. GENERAL SIGNIFICANCE: This study has provided a novel anti-mycobacterial role of SBL, which may play an important role in devising new therapeutic interventions.


Assuntos
Antibacterianos/farmacologia , Mycobacterium/efeitos dos fármacos , NF-kappa B/metabolismo , Lectinas de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas de Soja/farmacologia , Antibacterianos/isolamento & purificação , Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/microbiologia , Modelos Moleculares , Mycobacterium/fisiologia , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Lectinas de Plantas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Soja/isolamento & purificação , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/microbiologia
10.
Front Microbiol ; 11: 572433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042081

RESUMO

Two-component systems (TCSs) are central to the ability of Mycobacterium tuberculosis to respond to stress. One such paired TCS is SenX3-RegX3, which responds to phosphate starvation. Here we show that RegX3 is required for M. tuberculosis to withstand low pH, one of the challenges encountered by the bacterium in the host environment, and that RegX3 activates the cytosolic redox sensor WhiB3 to launch an appropriate response to acid stress. We show that the whiB3 promoter of M. tuberculosis harbors a RegX3 binding motif. Electrophoretic mobility shift assays (EMSAs) show that phosphorylated RegX3 (RegX3-P) (but not its unphosphorylated counterpart) binds to this motif, whereas a DNA binding mutant, RegX3 (K204A) fails to do so. Mutation of the putative RegX3 binding motif on the whiB3 promoter, abrogates the binding of RegX3-P. The significance of this binding is established by demonstrating that the expression of whiB3 is significantly attenuated under phosphate starvation or under acid stress in the regX3-inactivated mutant, ΔregX3. Green fluorescent protein (GFP)-based reporter assays further confirm the requirement of RegX3 for the activation of the whiB3 promoter. The compromised survival of ΔregX3 under acid stress and its increased trafficking to the lysosomal compartment are reversed upon complementation with either regX3 or whiB3, suggesting that RegX3 exerts its effects in a WhiB3-dependent manner. Finally, using an in vitro granuloma model, we show that granuloma formation is compromised in the absence of regX3, but restored upon complementation with either regX3 or whiB3. Our findings provide insight into an important role of RegX3 in the network that regulates the survival of M. tuberculosis under acid stress similar to that encountered in its intracellular niche. Our results argue strongly in favor of a role of the RegX3-WhiB3 axis in establishment of M. tuberculosis infection.

11.
Sci Rep ; 10(1): 8957, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488120

RESUMO

Tuberculosis treatment includes broad-spectrum antibiotics such as rifampicin, streptomycin and fluoroquinolones, which are also used against other pathogenic bacteria. We developed Drug Resistance Associated Genes database (DRAGdb), a manually curated repository of mutational data of drug resistance associated genes (DRAGs) across ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens, and other bacteria with a special focus on Mycobacterium tuberculosis (MTB). Analysis of mutations in drug-resistant genes listed in DRAGdb suggested both homoplasy and pleiotropy to be associated with resistance. Homoplasy was observed in six genes namely gidB, gyrA, gyrB, rpoB, rpsL and rrs. For these genes, drug resistance-associated mutations at codon level were conserved in MTB, ESKAPE and many other bacteria. Pleiotropy was exemplified by a single nucleotide mutation that was associated with resistance to amikacin, gentamycin, rifampicin and vancomycin in Staphylococcus aureus. DRAGdb data also revealed that mutations in some genes such as pncA, inhA, katG and embA,B,C were specific to Mycobacterium species. For inhA and pncA, the mutations in the promoter region along with those in coding regions were associated with resistance to isoniazid and pyrazinamide respectively. In summary, the DRAGdb database is a compilation of all the major MTB drug resistance genes across bacterial species, which allows identification of homoplasy and pleiotropy phenomena of DRAGs.


Assuntos
Antituberculosos/farmacologia , Bases de Dados Genéticas , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Curadoria de Dados/métodos , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Fluoroquinolonas/uso terapêutico , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mutação/efeitos dos fármacos , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Análise de Sequência de DNA/métodos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
12.
Comput Biol Chem ; 85: 107208, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32028107

RESUMO

Myc is a crucial player in cellular proliferation and a known regulator of cancer pathobiology. Modulation of Myc expression targeting the Myc Protein-Protein Interactors (PPIs) like Myc-Max has till now been the most explored approach. However, this approach threatens the normal cells where Myc expression is required for proliferation. This demands the need for a new strategy to indirectly modulate Myc expression. Indirect modulation can be achieved by regulating Myc turnover. FBXW7 mediates the ubiquitination and subsequent degradation of Myc which is reversed by USP28. In this study, the interaction of USP28 with FBXW7 as well as with its substrate, Ubiquitin (Ub) were used as targets. Computation based high-throughput screening of bioactive small chemicals using molecular docking method was implemented to predict USP28 inhibitors. For the two regions, docking study with AutoDock Vina gave top 10 best scoring drugs which were identified and tabulated. The two regions defined in the study as FBXW7 binding and Ub binding also encompass the areas in which USP28 differed from USP25, a homologue with a different role. Out of these the best scoring drugs were explored for their role in cancer, if any. This study was performed keeping in mind re-purposing of these known drugs for possible alternative anti-Myc cancer therapy.


Assuntos
Biologia Computacional , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
13.
FASEB J ; 34(3): 4329-4347, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971297

RESUMO

Plasmacytoid dendritic cells (pDCs) express Toll like receptors (TLRs) that modulate the immune response by production of type I interferons. Here, we report that sphingosine kinase 1 (SphK1) which produces the bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), plays a critical role in the pDC functions and interferon production. Although dispensable for the pDC development, SphK1 is essential for the pDC activation and production of type I IFN and pro-inflammatory cytokines stimulated by TLR7/9 ligands. SphK1 interacts with TLRs and specific inhibition or deletion of SphK1 in pDCs mitigates uptake of CpG oligonucleotide ligands by TLR9 ligand. In the pristane-induced murine lupus model, pharmacological inhibition of SphK1 or its genetic deletion markedly decreased the IFN signature, pDC activation, and glomerulonephritis. Moreover, increases in the SphK1 expression and S1P levels were observed in human lupus patients. Taken together, our results indicate a pivotal regulatory role for the SphK1/S1P axis in maintaining the balance between immunosurveillance and immunopathology and suggest that specific SphK1 inhibitors might be a new therapeutic avenue for the treatment of type I IFN-linked autoimmune disorders.


Assuntos
Autoimunidade/fisiologia , Interferon Tipo I/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autoimunidade/genética , Western Blotting , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética
14.
Curr Top Med Chem ; 18(13): 1123-1134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30068279

RESUMO

Asthma is a complex, heterogeneous, airway inflammatory disorder broadly classified into atopic (IgE mediated) and non-atopic asthma. Monoclonal Antibodies (MAbs) and small chemical Protein- Protein Interaction Modulators (PPIMs) are targeted against interleukins (ILs), which play a critical role in asthma. Many MAbs are targeted against ILs and IgE. Anti IgE MAb (Omalizumab) and Anti IL- 5 MAbs (Mepolizumab, Reslizumab) have only been approved by FDA. Most of the MAbs including Tracolizumab, Lebrikizumab, Anrukinzumab (Anti IL-13 MAb), and Brodalumab (Anti IL-17 MAb) are in different phases of clinical trials. Pascolizumab (Anti IL-4 MAb), however, has failed. These MAbs are expensive and may render adverse immune response. Thus, small chemical modulators targeting ILs and their receptors (IL-Rs) are being exploited computationally and further validated experimentally. The complex ILs and IL-Rs available in PDB are best suited for these types of studies. A large number of small chemical modulators against Protein-Protein Interactions (PPIs) have been compiled in a few databases like TIMBAL, 2P2I DB and IPPIDB. Small chemical libraries are used for virtual screening to find novel modulators targeting IL-R binding interface on IL. Molecular dynamic simulations have been further used for disruption mechanism and kinetic studies. IL-2/IL-2R was targeted with clinically tested small molecule modulators like SP4206, and IL-2 levels were known to increase in non-atopic asthma. In the absence of experimentally known modulators against atopic asthma, computational tools are being explored. For example, IL-33 is a target for atopic asthma where IL-33 and its receptor complex structure is available in PDB. In summary, small chemical modulators against ILs are a complementary approach to MAbs and computational tools have been used for identifying these modulators for asthma.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Simulação por Computador , Desenho de Fármacos , Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Antiasmáticos/química , Antiasmáticos/uso terapêutico , Humanos
15.
Biochim Biophys Acta Gen Subj ; 1861(12): 3190-3200, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935606

RESUMO

Phenotypic screening led to the identification of calcimycin as a potent inhibitor of Mycobacterium bovis BCG (M. bovis BCG) growth in vitro and in THP-1 cells. In the present study, we aim to decipher the mechanism of antimycobacterial activity of calcimycin. We noticed that treatment with calcimycin led to up-regulation of different autophagy markers like Beclin-1, autophagy-related gene (Atg) 7, Atg 3 and enhanced microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion in macrophages. This calcimycin-mediated killing of intracellular M. smegmatis and M. bovis BCG was abrogated in the presence of 3-methyladenine (3-MA). We also demonstrate that calcimycin binding with purinergic receptor P2X7 (P2RX7) led to increase in intracellular calcium level that regulates the extracellular release of ATP. ATP was able to regulate calcimycin-induced autophagy through P2RX7 in an autocrine fashion. Blocking of either P2RX7 expression by 1-[N,O-bis(5-Isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-62) or reducing intracellular calcium levels by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy-methyl) ester (BAPTA-AM) abrogated the antimycobacterial activity of calcimycin. Taken together, these results showed that calcimycin exerts its antimycobacterial effect by regulating intracellular calcium-dependent ATP release that induces autophagy in a P2RX7 dependent manner.


Assuntos
Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Calcimicina/farmacologia , Cálcio/metabolismo , Mycobacterium bovis/efeitos dos fármacos , Receptores Purinérgicos P2X7/fisiologia , Trifosfato de Adenosina/fisiologia , Células Cultivadas , Humanos , Mycobacterium bovis/metabolismo
16.
R Soc Open Sci ; 4(4): 160501, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484602

RESUMO

PPIMpred is a web server that allows high-throughput screening of small molecules for targeting specific protein-protein interactions, namely Mdm2/P53, Bcl2/Bak and c-Myc/Max. Three different kernels of support vector machine (SVM), namely, linear, polynomial and radial basis function (RBF), and two other machine learning techniques including Naive Bayes and Random Forest were used to train the models. A fivefold cross-validation technique was used to measure the performance of these classifiers. The RBF kernel of SVM outperformed and/or was comparable with all other methods with accuracy values of 83%, 79% and 90% for Mdm2/P53, Bcl2/Bak and c-Myc/Max, respectively. About 80% of the predicted SVM scores of training/testing datasets from Mdm2/P53 and Bcl2/Bak have significant IC50 values and docking scores. The proposed models achieved an accuracy of 66-90% with blind sets. The three mentioned (Mdm2/P53, Bcl2/Bak and c-Myc/Max) proposed models were screened in a large dataset of 265 242 small chemicals from National Cancer Institute open database. To further realize the robustness of this approach, hits with high and random SVM scores were used for molecular docking in AutoDock Vina wherein the molecules with high and random predicted SVM scores yielded moderately significant docking scores (p-values < 0.1). In addition to the above-mentioned classification scheme, this web server also allows users to get the structural and chemical similarities with known chemical modulators or drug-like molecules based on Tanimoto coefficient similarity search algorithm. PPIMpred is freely available at http://bicresources.jcbose.ac.in/ssaha4/PPIMpred/.

17.
PLoS One ; 11(5): e0155911, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27218803

RESUMO

A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators.


Assuntos
Biologia Computacional/métodos , Proteínas de Neoplasias/química , Neoplasias/metabolismo , Peptídeos/genética , Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/genética , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...